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Abstract

Bending medulus of elasticity measurements have been useful and profitable for decades in the sorting of dimensicn lumber
for its structural quality. Bending and tensile strengths of lumber are known to be correlated with modulus of elasticity. Previous
research indicates that knowledge of elasticity properties on shorter spans may improve the correlation with strength. However,
for practical reasons, bending spans cannot be as short as the desired measurement resolution. It is expected, therefore, that the
optimal estimation method of the present work will be applied in the machine stress rating (MSR) process for more accurate
sorting of dimension lumber into MSR grades. We describe a method for estimating local modulus of elasticity along the length
of a beam. A sequence of measurements from overlapping bending spans, such as those obtained in equipment for MSR lumber
sroduction, is processed using & new concept called “span function.” The method is feasible in real-time, and the primary
requirement for its implementation with high-speed, production-line equipment is additional software. Tests indicate that the
method may be immediately applicable in reducing measurement noise in the MSR process, thereby improving grading accu-
racy. Further, it is likely that improved grading algorithms will be developed that make use of local elasticity properties. Because
of the large throughput volume of modern MSR machinery, the profit increment fromn reduced measurement noise alone has the
potential for funding the research into better grading algorithms.

B ending modulus of elasticiiy measurements have been
useful and profitable for decades in the sorting of dimension
lumber for its structural quality. Bending and tensile strengths
of fumber are known to be correlated with modulus of elastic-
ity. Previous research indicates that knowledge of elasticity
properties on shorter spans may improve the correlation with
strength. However, for practical reasons, bending spans can-
not be as short as the desired measurement resolution. It 1s
expected, therefore, that the optimal estimation methed of the
present work will be applied in the machine stress rating
(MSR) process for more accurate sorting of dimension lumber
into MSR grades.

Wocod is a highly variable material, and there has been sig-
nificant historical interest in better determination of local
modulus of elasticity. Clearly, the assumption that local
modulus of elasticity within a bending span is uniformly the
same as measured modulius of elasticity from a bending mea-
surement is made only because of the inability to obtain the
local values from bending measurements. An early paper
(Kass 1975) discussed some of the precision difficulties in-

volved with bending measurements for short span lengths.
Kass described method and laboratory equipment for deter-
mining bending values on various span lengths from 203 mm
t0 610 mm and was able to show evidence of a knot corre-
sponding to minima for short spans that was not evident from
longer span data. Other work has shown that measurements on
shorter spans have provided better correlation with strength
{Orosz 1976).
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Obijectives

Our first objective is to use a sequence of overlapping bend-
ing modulus of elasticity measurements along the length of a
beam and optimaily estimate local modulus of clasticity for
each increment in a subdivision of the beam length. Our sec-
ond objective is to show how better resolution of local prop-
ertics will be useful for better determination of structural qual-
ity of a beam. We think the work has commercial value and
will improve the accuracy, and hence profitability, of the ma-
chine stress rating (MSR) process. which sorts dimension
lumber itito MSR grades.

Background
Modulus of elasticity and compliance

Before proceeding, we define more precisely the measured
and local property functions. Almost al! the literature involv-
ing bending measurements and the intrinsic material proper-
ties leading to these measurements has involved modulus of
elasticity; but, our work uses compliance. From measured
modulus of elasticity, we define measured compliance C, =
1/E,,. Similarly, from local medulus of elasticity, we define
local compliance C = 1/E. 1t is not that we prefer to use com-
pliance over modulus of elasticity; rather, a derivation shows
it is compliance that has a desired convolution relationship
useful for our resulis.

The span function, a necessary concept

Span function is a weighting function that shows how each
local compliance along the length of a beam coniributes to 8
bending measurement of compliance. A platform scales anal-
ogy is helpful in explaining the span function concept. Sup-
pose a line of people marches across the platform of a plat-
form scales in single file. As one person steps off, another
steps on so that for each measurement the total weight of 10
people is obtained. Now, if the totals are each divided by 10 to
get a sequence of weighted averages, the resuitis analogousto
our compliance measurements. In this case, the weighting
function (span function) is wniform; that is, each person’s
weight contributes to the result independently of bis position
on the platform. Carrying the analogy further as related to the
present work, the problem is to estimate each person’s weight,
ie., the local weight, from the measurement sequence of
weighted averages. For a bending span appiied to a beam, the
span function is #of uniform, and each Jocal compliance con-
tributes differently to the measurement depending on its po-
sition along the span.

Review of previous work

The span function for a simply-supported, center-loaded
bending span was derived by Bechtel (1985). Figure 1 iilus-
trates this span function for two different span lengths. The
measured compliance function obtained from bending mea-
surements along a beam was shown to be the mathematical
convolution of the local compliance function and the span
function. Because of the convolution theorem of mathemat-
ics, wherein, after taking Fourier transforms, the convolution
of two functions becomes multiplication, it was natural to sug-
gest obtaining the local function by division followed by an
inverse Fourier transform operation. 1o the following, A refers
to the span function, and * indicates convolution. The convo-
lution relationship is:

C,=C*h [1]
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Figure 1. — Span functions for simply-supported, center-
joaded bending spans of 1219 mm (48 inch) and 800 mm.

After converting convolution to muitiplication by taking
Fourier transforms. the relationship becomes:

C,=C-h [2]

where the overbar indicates Fourier transform of the function
beneath it. and - indicates multiplication. From [2]. division
gives:

C= 3]

rai
h

It seems then that taking the inverse transform of the quo-
tient in [3] should give the desired local compliance C. How-
ever. the measurement of C,, is typicaily noisy, particular at
high frequencies. This noise and the fact that the Fourier trans-
form of Jr in the denominator of [3] is very small at high fre-
quencies renders the inverse transform of the ratic in [3] use-
less due to its high frequency noise.

A computationally intensive method was developed (Bech-
tel and Allen 1985) to reduce noise effects and was applied to
flatwise bending measurements for one piece of Radiata Pine
lumber with cross-section dimensions 38 mm by 89 mum (1.5
inch by 3.5 inch)'. The bending apparatus was an off-line
tester modified to have a simply-supported, center-loaded
bending span 1219 mm (48 inch) long, Compliance measure-
ments were made every 19 mm (3/4 inch) as this wood beam
was moved longitudinaily relative io the bending apparatus.
The result was a graph, presented here as Figure 2, which
reveals two local minima in the local E function over a 300
mm (12 inch) segment where the measured £, showed only
one. These minima corresponded to two knots observed on the
measured board.

The computational intensiveness of the method was dis-
couraging. Also, there is a problem with end effects due to
Gibb’s phenomenon (Guillemin 1949) that must be dealt with
when using the Fourier transform on a finite-length wood
beam. While the result in Figure 2 used the span function and
measured data from a simply-supported, center-loaded bend-
ing span, Bechtel (1985) erroneously suggesied applying the

! There is some inconsistency in our use of units. An effort has been made to
convert 1o 81 units where practical. but instances remain where existing data and
graphs are expressed in English units. Where it scems useful, units in both sys-
tems are given in the text
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Figure 2. — Measured E,, (= Egq) from simply-supported,
center-foaded bending span 48 inches long (Bechfel and
Allen 1985). Computed local E used the measured E,, se-
guence, the span function 48 of Figure 1, and the Fourier
transform method with a numerically intensive procedure fo
reduce noise. Local E clearly distinguishes two knots in a
region of the beam where only one might be inferred from
measured E,,,.

same span function to data from clamp-roller-supported spans
used in high-speed production machinery.

Others (Foschi 1987, Lam et al. 1993, Pope and Matthews
1995) also applied the Fourier transform method to estimate
local compliance values, These efforts used frequency trun-
cation to reduce unwanted high frequency noise. Pope and
Matthews concluded that the resulting local E was only mar-
ginally better than measured E,, for estimating bending
strength, All of this work used a simply-supported, center-
loaded span function, While frequency truncation is useful in
reducing noise, it is a suboptimal, ad hoc approach to the prob-
lem.

Shear deflecticns and their local variations are not consid-
ered. We believe the effects due to shear are of'second order in
the proposed MSR lumber grading application because of the
relatively large span-to-depth ratios used. However, shear ef-
fects may be important in other applications. In that case more
involved derivations may be required.

Computing span function

We give a computational procedure for obtaining the span
function for a bending span having a general system of sup-
pozt points. Graphs of span functions for several commonly
used bending spans are presented. Acceleration forces at the
supports are assumed negligible. Thus, the work is not di-
rectly applicable for some older production-line machines in
cases where support point apparatus may translate as deflec-
tions change, e.g., In response to a constant load. This is notan
issue for modern high-speed bending machinery using fixed
supports or for off-line machinery where supports deflect
slowly. The E-computer mentioned last in this section is
treated as a special case.

For a given bending span arrangement of support points,
basic beam theory (Higdon et al. 1960} allows measured com-
pliance C,, to be obtained as a function of support deflections
divided by a function of support forces. If the local compli-
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ance is constant, say C = C,, the computed “measured” com-
pliance C,, will equal the constant local value C,,.

[2

We can also compute a measured compliarce if the local
compliance function is a constant plus an impuise of compli-
ance. The impulse is a mathematical construct that has infinite
height and zero width; but, it has area “b” known as the im-
pulse weight. Think of this as a very short and very limber
region of the beam at a specific point along the beam. A com-
pliance impulse conld be approximated by a sawkerf across
the width and partway through the thickness of a wood beamn.
Suppose this beam is measured for bending compliance by a
simply-supported, center-loaded bending span. It seems intu-
itively clear that the compliance impulse will have little effect
on the measured compliance if it is near an end support of the
bending span and maximum effect if it is in the middle of the
span, and that the effect will decrease as the weight b of the
impulse is decreased {e.g., depth and/or width of sawkerf is
decreased). This made-up local compliance function consist-
ing of a constant plus an impulse is used in the computation of
span function.

The span function A(x) is the difference between the mea-
sured compliance with impulse and the measured compliance
without impulse, this difference being divided by the impulse
weight b and taken to the limit as b approaches zero. The lim-
iting operation can be written: as a partial derivative so that the
span function /(x) is given by:

Cnr(b’x) - Cr) E)C.'iz(b’x)
b T b

(4]

)= i

h=0

where C, (h,x) is the measured compliance when the local
compliance is the constant C,, plus an impulse of weight b at
position x, and x is the impulse position relative to a bending
span reference, Derivation of [4] and details of computing the
span function for bending spans of interest are in the cited
literature (Bechtel 2007, Bechte! et al. 2006). Generally, com-
putation of the derivative involves performing the limiting op-

eration in [4].

Span functions for specific useful bending
span configurations

Simply-supported, center-loaded bending span

This commonly used arrangement has a span function that
is zero outside the bending span and consists of two quadratic
pieces within the span as shown in Figure 1 for both 900 mm
and 1219 mm (48 inch) spans. The span function labeled 48 in
Figure 1 was used to obtain the result in Figure 2.

Production-line machine

Referring to Figure 3, each bending section of one type of
machine used to produce MSR lumber (back cover of this
journal, Bechtel et al. 1996} uses support rollers 1 at seven
support points {x,}_;. Each measurement E,, is taken as pro-
portional to the load seen on the support at x,. As a beam 2
progresses through this system of supports, useful measure-
ments begin when the leading end 7 engages just the first five
supports as illustrated in Figure 3. Then, as it progresses fur-

ther, it will engage the first six supports, then all seven, then

the last six, and finally just the last five supports. Each of the
five bending spans thus identified has a “central region” in
commen, namely the 1219 mm {48 inch) region between sup-
ports x and x5 in Figure 3. Each bending span has a different
span function plotted in Figure 4 and labeled in order 31
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Figure 3. — A production-line configuration of seven support points al x, through X, is iflusirated, An increment 15 of the beaim
length subdivision is shown. The extent of the bending span 14 can change depending on how many suppecrts are engaged; in
the figure, the span extent 14 is inconsistently shown as though all seven supports were engaged, when in fact the beam 2 is

engaging only the first five.
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Figure 4. — Span functions for the five applicabie bending
spans of Figure 3 for beams longer than x, — x; = 2032 mm
{80 inch). The sequence of 5, 6, 7, 6, and than & suppotts
engaging the beam as the beam progresses through the sys-
tem has respectively the span functions labeled 31, 32, 33,
34, and 35. The span functions for the 6 and 7-support cases
are indistinguishable from one another on the scale of this
graph. The 5-support span functions 31 and 35 are clearly
diffarent from the others and from each other.

32,..., 35, as a beam engages them while passing through.
On the scale of the figure, the differences among the six and
the seven support configurations 32, 33, and 34 cannot be
seen. This sequence of span functions is valid under the as-
sumption that the beamn is longer than x; — x,, L.e., 2032 mm
(80 inch).

The example span functions of Figure 4 are idealized ver-
sions and were computed with the assumption of rigid and
perfectly aligned supports. Flexure of the supports and com-
pression of wood fibers at the support points can be modeled
and included in the computation of span functions as can de-
viations from perfect alignment. Generally, a lack of rigidity
leads to a softening of span function shape. Instead of the span
functions in Figure 4 returning crisply to zero at plus and
minus 610 mm (24 inch) from span center, the functions re-
turn more smoothly to zero cutside the central region thereby
increasing the extent of the domain where the span functions
are nonzero. Differences not seen among the span functions
labeled 32, 33, and 34 in Figure 4 are more pronounced if the
supports are not completely rigid, and amplitudes of the span
functions in the center of the central region are reduced. Mis-
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alignment of the supports in Figure 3 also changes the span
function shape and extent.

Bending proof load testers

In North America two different configurations are com-
monly used in bending proof load testers for off-line quality
control of bending modulus of elasticity. Figure § iilustrates
both configurations. Four equally spaced supports provide
loading of a beam 2. Equal forces are applied in one direction
at the inner two supports with reaction forces in the opposite
direction at the outer supports. In the first configuration, beam
deflection is measured 54 as the average of the support deflec-
tions at the inner two supports. In the second configuration,
deflection is measured 55 at span center, and if is necessary for
span function computations to introduce a zere-force, center
support between the inner two supports. Deflection at center
span is measured at this center support, and a five support
system is solved where the center support force is specified as
zero. The span functions computed for these two configura-
tions of proof testers are illustrated in Figure 6. Full details of
these computations may be found elsewhere (Bechtel et al.
2006). From Figure 6, the span functions for these machine
configurations are not identical even though bending mo-
ments in a tested beam are. Compliances in the center third of
the bending span contribute equally to measured compliance
in the first case, but not in the second. These differences may
be important for specifying quality control procedures that de-
termine whether a wood beam satisfies grade requirements.

Transverse vibration E-computer

The transverse vibration E-computer takes advantage of the
differential equation modeling a transversely vibrating beam,
simply supported at its ends, to relate the fundamental vibra-
tion frequency, beam weight, beam dimensions, distance be-
tween supports and beam modulus of elasticity. Measured £,
(or measured C,,) is computed from the other quantities i this
relationship. In the model, local density and compliance are
assumed uniform along the beam length. Our span function
computation allows us to determine the effect of Jecal com-
pliance variations,

The E-computer span function is computed following the
procedure of Equation [4] where a compliance test function
with compliance impulse is introduced. The resulting span
function is given by:

{ —cos(2mx/L)

h(x) T

O0=x=1L [5]
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Figure 5. — Mechanical schematic for two bending proof load
testing configurations. The first measures deflection at 54 as
the average of the loading support deflections. The second
measures deflection 85 at span center. While induced mo-
ments In a tested beam 2 are identical, the span functions are
different (see Figure 8).
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Figure 8. — Span functions for the two configurations of
Figure 5. Span function for deflection measurement 584 in
Figure 5 is shown as curve 40. Span function for deflection
measurement 55 in Figure § is shown as curve 41.

where L is the distance between supports. The E-computer
span function, illustrated in Figure 7, is a raised cosine func-
tion. This result is incomplete because it does not account for
density variations within a beam, which affect the dynamics
of'the vibratien. However, Equation [5] does answer the ques-
tion sometimes raised with the £-computer method about the
effects of local compliance variation along the length of a
tested beam. The result is included to illustrate the generality
of the method for computing span function.

Description of compliance measurements as a
sample function from an ARMA random process

Refer now to the block diagram of Figure 8 where 14 rep-
resents the extent of the bending span. First, consider just the
upper part, the autoregressive (AR) part, of the block diagram
invelving the autoregression parameters { &, M., which define

the statistical structure among the local compliance values.
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Figure 7. — Transverse vibralion E-computer has a raised
cosine span function.

The unknown local compliance values are given statistical
structure to recognize and take advantage of the fact that they
are correlated. For example, if the local compliance value
were known for one length increment in a subdivision of the
beam, then it is likely that the value in an adjacent length in-
crement will be nearly the same.

Imagine that a beamn is moving in steps indexed by & from
left to right through the vertical center of the block diagram
with the leading end starting off at the left of the diagram at 11.
The local compliance of the first increment of the beam is
represented by a random number u(k) at 11, It goes through a
delay {beam moves to the right by one step) and is fed back via
(multiplied by) autoregression parameter &, and added (witha
minus sign) to a random number u(k + 1) to give the local
compliance for the second increment of the beam at 11. Both
first and second increment compliances go through delays
{denoted by blocks with z™') and are fed back via parameters
a, and &, respectively and added to random number u(k + 2} to
give the local compliance for the third increment of the beam
at 11; and so on. When the lead end of the beam gets to the
right side of the block diagram, a set of p unknown local com-
pliance values, represented by {s,(%}}7., and having the de-
sired statistical structure, has been defined. The beam has just
completed the bending span 14, its lead end is ready to exit the
spam, and it is in position for modeling the first measured com-
pliance.

From the span function at step £, a set of weights {1k} 4L,
summing to one is computed. The weights are areas under the
span function over equal length increments in a regular subs-
division of its domain. These increment lengths are equal @
the increment lengths of the beam’s subdivision. Consider ths
lower part, the moving average (MA) part, of the block dia-
gram in Figure 8. The (unknown) local compliance values
$;{k) are multiplied by the weights /i{k) in inverse order znd
the products summed along with measurement noise i @
give the measured compliance y{k) as a noisy weighted 2x2
age of the local compliances. The dependence of the weighss
h{k) on k indicates that the bending span and weighss 3
change during the measurement process. Not only czn 52
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Figure 8. — Block diagram of ARMA mods! for measured compliance C.,. A wood beam can be thought of as moving from left
to right at the vertical center of the diagram, and the local compliances are in correspondence with the components {8k}, of
a state vector at any measuremerit stop k. The blocks iabeled z™7 are delays. Autoregression parameters {a;}iL, relate com-
pliances along the beam, and the weights n()Jf, are compuled from the span function applicable at measurement step k. If
the lead end of the beam is at the right of the diagram, then it has just completed the bending span 14, and the first p local
compliance values of the beam are in correspondence with the p state variables. At the next measurement step, when the beam
has moved one increment to the right, local compliances 2 through p + 1 are in correspondence with the p state variables.

weights change with %, but the number of them can change”,
which implies that the extent 14 of the bending span can
change.

As the beam moves to the right, another {overlapping) set of
local compliances is weighted to give the next measured com-
pliance, all according to a discrete signal version of the con-
volution in Equation [1] (Oppenheim and Schafer 1989), The
set of compliance measurements is a moving average (MA) of
the local compliances, The autoregressive { AR} model for the
local compliances followed by the moving average measure-
ment allows the compliance measurerment sequence to be de-
scribed as an autoregressive moving average (ARMA) ran-
dom process (Hayes 1996). The AR parameters may be esti-
mated from compliance measurements as described in
Bechte! et al. 2006 and 2007, or by other means. At least to
begin, the number of AR parameters used may be very small,
perhaps just one, which statistically relates compliance values
in adjacent length increments.

Overview of the method for estimating local E by
using a Kalman filter

An ARMA process can be modeled as the cutput of a linear
dynamic system and represented in state-space format
(Schwarz and Friedland 1965, Ogata 1987, Papoulis 19%1)
where the state vector components, i.e., the state variables
5,(k) of Figure 8, correspond with local compliance values
within the bending span. In this formas, the system model is
ready for application of a Kalman filter (Kalman 1960).>

* Tt is not required that the number of autoregression parameters equals the aumber
p of increments in the bending span subdivision. [n the examptes to follow only
one autoregression paramcter is used. Also, the number of autoregression pa-
rameters can exceed the number p. In that case the AR part (the upper part} of
Figure & would extend further to the lefi. However, obtaining information to
adequately determine more (han a smail number of awtoregression coefficients
may be difficult.

3 Kahman's seminal 1960 work has found numercus applications. An excellent
text {Kailath et al. 2000} puts Kalman's paper in perspective with other topics in
estimation theory. Another recent text (Eubank 2¢06) is useful. The present ap-
plication is a littlc unusual in its identification of the siate vector with local com-
pliance values,

FOREST PRODUCTS JOURNAL VoL, 57, No, 1/2

The Kalman filter uses a previous state vector estimate, its
covariance matrix and a new compliance measurement to
compute an updated state vector estimate along with its
covariance matrix. By this means the local compliance esti-
mates and their variances are obtained because local compli-
ances are in correspondence with the state variables, At each
stage, the Kalman estimation process may be organized info
two steps, prediction and then correction. Before a measure-
ment, predictions of the state vector and the measurement are
made based on the present state vector estimate and the
ARMA model. After a measurement, the difference between
the actual measurement and the predicted measurement is
used to correct the state vector estimate. These iterative steps
are repeated until each measurement in the sequence of bend-
ing measurements of the beam has been processed. When-
ever, a local compliance value no longer will contribute to a
measurement, i.e., when it is about to leave the berding span
or when all compliance measurements have been used, the
most recent Kalman estimate of the corresponding state vee-
tor compoenent is taken as the estimate of that local compli-
ance value.

While a sequence of compliance measurements C,, is
formed simply as the reciprocals of their respective modulus
of elasticity measurements E,,, local £ estimates are not ob-
tained from local C estimates in quite the same way. Each
local C estimate C* is established by the Kalman filter as the
mean value of a distribution that has a variance V. It is not
true that the mean value £* of a corresponding E distribution
is the reciprocal of C*. If the variance ¥ is small, the error
may not be large by taking the reciprocal in this way. How-
ever, 1t is better to make a correction based on the coefficient
of variation (COV) of the C distribution:

T

s [6]

COVe=

After a first order correction, the local £ estimate and its
coefficient of variation are (Papoulis 1991):
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Additional details of the estimation method may be found in
(Bechtel et al. 2006 and 2007).

Advantages of the method

1. Fourier transforms are not required, which eliminates
the probiems of end effects and noise amplification.

2. The method is iterative and computationally efficient.
Each result is used as input in obtaining the next. Local
estimates may be obtained for the leading end of a wood
beam while the trailing end is still being tested in a ma-
chine.

3. The method is optimal in a least squares sense against
the assumptions used.

4. Tests show feasibility of real-time data-processing in the
production line with microcomputer technology and op-
erating with a 55.6 mm sampling interval. Tests indicate
that sampling every 55.6 mm is sufficient, which corre-
sponds to a subdivision of wood beams into 55.6 mm
length increments. Local C and E estimates are associ-
ated with each increment. it is feasible to preprocess the
13.9 mm measurement data from high-speed MSR pro-
duction equipment with a decimation filtering step (Op-
penheim and Schafer 1989), thereby using these data for
measurement noise reduction while increasing the
sample period to 55.6 mm. Real-time processing is
likely not feasible using the 13.9 mm data directly with-
out the decimation step because this finer subdivision
greatly increases computational requirements. Real-
time processing with a 27.8 mm sampling interval (half
of 35.6 mun) may be feasible because computing power
has increased since the tests were performed.

5. 4 priori mformation about statistical properties of a
wood beam population can be included. Autoregressive
parameters used in the mode! may be dependent on the
populations tested, and these may be fitst estimated and
then refined from compliance measurements as part of
the production process.

6. The variance of each estimate is given. Thus, the esti-
mates are obtained with a measure of estimation quality,

7. Estimates are obtained out to the ends of each tested
beam, although the estimation quality near beam ends is
low.

8. The method allows different bending spans and different
span functions to be used as a wood beam passes through
a bending machine, This is important in high-speed pro-
duction-line machines where the bending span changes
during the measurement of each beam.

9. The method framework can be expanded to include ad-
ditional measurements, thereby using a sequence of vec-
tor measurements instead of the sequence of scalar mea-
surements presented here for estimating beam proper-
ties.

Results

The following results use the ARMA model of Figure 8,
butail AR coefficients are set to zero except for a, =P, where
1

Y
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Figure 8. — Results from a simufated wood beam having
generated local E funciion, curve 71. Simulated measure-
ments E,,, curve 72, were obfained by convolving reciprocals
of 71 with the span functions of Figure 4 in the appropriate
sequence. Kalman estimates of focal E comprise curve 73.
The lower window is expanded from the Upper so that detail is
more easily seen. Curve 74 in the central window shows
COV¢ for the local E estimates.

2

o
fﬁf‘is a correlation coefficient for the compliance values be-
Tween adjacent tength increments,

Simulated data - F

Figure 9 illustrates results using a simulation process
generate local modulus of ¢lasticity of a wood beam. A cor-
relation value ofiP'= 0,97 was used in the generation of local
compliance data and reciprocals taken to yield curve 71. Ad-
ditionally, low peints one sample period wide were placed a1
the locations marked 68, and two sample periods wide at ihe
location markec 69. The simulated local compliance data of
curve 71 were convolved with the sequence of span functions
of Figure 4 to give simulated measured compliance dass.
thereby simulating passing a wood beam with the simulziad
local values through a production-line machine having ihe
bending support arrangement of Figure 3. Taking reciprocats
vielded the simulated measured E,, of curve 72. Note thar
these data do not extend to the ends of the simulated beam
because there are not as many measurements as there are -
crements in the beam subdivision. Bending measuremenis
cannot be taken out to the beam ends because of the necessiry
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Figure 10. — Shown are measured E_,, curve 76, from a 38
mm by 140 mm by 6.1 m (2-in. by 6-in. by 20-ft) wood beam
of Canadian Spruce-Pine-Fir; Kalman estimated local E,
curve 77; and COVg, curve 78. t/’-}

-

of completing the bending spans. The “measured”/Em data
were processed hy the methods deseribed, but with{P=0.90 in
the model for use with the Kalman filter, to obtain the local £
function of curve 73. The introduced low points provide jus-
tification for the lower assumed correlation coefficient than
used to generate the local compliance data. Figure 9¢ is an
expanded window from Figure %a to better see detail near the
local E minima. Figure 9b shows the coefficients of variation
for the local £ estimates. The estimated local £ follows the
simulated local £ more closely than the “measured” £, ; how-
ever, from Figure 9a, it is clear that estimation is not good
near the ends of the piece as is also clear from Figure 9b,
which shows large COV near the ends.

Real data

Figure 10 illustrates real measured data from a piece of
dimension lumber 38 mm by 140 mm by 6.1 m (1.5 inch by
5.5 inch by 20 ft) from a spruce-pine-fir population in central
British Columbia, Canada. Figure 10a illustrates the mea-
sured E,, as curve 76. The computed local £ function, curve
77, was obtained with a correlation coefficient of 9 =0.90in
the AR model for local compliance. ~ e

No comparison with true local £ is possible because it is
unknown. However, it seems likely that estimated local £
with a minimum of about 0.55E6 psi (3.8E9 Pa) just before the
30-inch mark might be more useful in an accurate categoriza-
tion of structural grade than measured £, with a minimum of
about 0.80E6 psi (5.5ES Pa).

Initialization parameters and conditions for the estimation
process are discussed more fully in the literature (Bechtel et
al. 2006 and 2007). Many other experiments were made with
different combinations of parameters. If the correlation coef-
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ficient s set very close to one, so that adjacent local compli-
ance values are assumed highly correlated, then the computed
local E tracks the measured E,, curve very closely (not illus-
trated), but without the measurement noise that is apparent cn
measured E,, data sets. This provides a practical lead-in to use
of the method in the production line. While the method is un-
dergoing testing and improvement to better estimate local £
and other structural properties, it can be used to reduce noise
and likely increase grading accuracy without affecting other
aspects of an MSR sorting and quality control program.

Summary and conclusions

A method was developed to optimally estimate local medu-
lus of elasticity at MSR lumber production speeds. A result
was observed that will have immediate benefit in the MSR
grading process. Working with a correlation coefficient arti-
ficially close to one, the estimated local modulus of elasticity
was observed to track very closely with the measured modu-
lus of elasticity, but without the noise that can occur on the
measured signal. Because ofthe very high thronghput of MSR
machinery, reducing measurement noise alone may nnprove
the grading accuracy enough to pay for further research re-
quired to fully achieve our second objective, Commercial
implementation will involve primarily additional software.

Additional research required to fully achieve the
second objective

While operating with a correlation coefficient artificially
close to one and accepied guality control procedures, the less
noisy signal should allow machine threshold adjustments for
higher grade vields. Further yield benefits likely under the
present North American MSR grading process may be tested
by experimenting with small reductions in the correlation co-
efficient while adjusting machine thresholds to maintain pro-
cess control.

Our method uses an autoregressive model to specify statis-
tical structure among local compliance values and a moving
average model to define compliance measurement. Improve-
ments may be possible by including other models of specity-
ing statistical structure for local properties of interest as well
as local compliance. Some steps have been taken in this di-
rection for local increments of 610 mm or longer (Kline et al.
1986, Taylorand Bender 1989 and 1991, Richburg etal. 1991,
Hernandez et al. 1992, Rickburg and Bender 1992, Taylor et
al. 1992, Lam et al, 1993). Although we are concerned with
local increments about one-tenth or less of the lengths used in
these references, the modefing ideas of these cited references
provide interesting background material.

Additional measurements that can be identified as weighted
combinations of focal compliance and/or other local proper-
ties may be implemented as components of a vector measure-
ment sequence. Then instead of a sequence of scalar measure-
ments, a sequence of vector measurements can be input to a
Kalman filter. Possible measurements include density
(Schajer 2001), grain angle (Bechtel and Allen 1990), and di-
electric properties (Bechtel et al. 1995 and 1997}, In the 1990
reference cited, a “tracks” method was proposed and tested.
The tracks method used measured £, and grain angle to de-
velop an estimator for tensile strength and achieved an »° =
0.91 for a small 24 piece sample. While it is unknown if our
estimated local £ used as input would have produced a better
result, it was conjectured then that the excellent results

125




achieved may have been partially due to the limited span
{engths over which testing was done.
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